GROUP THEORY 2024 - 25, EXERCISE SHEET 4

Exercise 1. To always do in every course!

Review the lecture and understand/fill in the gaps in the proofs.

Exercise 2. Let p be a prime number and G a group of order p^2 . Let Z(G) be the center of G. Using the following steps, show that if G is not cyclic, then it is isomorphic to $\mathbb{Z}/p\mathbb{Z} \times \mathbb{Z}/p\mathbb{Z}$.

- (1) Using the action of G on itself by conjugation, show that $Z(G) \neq \{0\}$ is non-trivial;
- (2) Show that G/Z(G) is cyclic and deduce that G is abelian;
- (3) Show the result.

Exercise 3. Show that $\mathbb{Z}/4\mathbb{Z}$ cannot be written as the semi-direct product $\mathbb{Z}/2\mathbb{Z} \rtimes_{\varphi} \mathbb{Z}/2\mathbb{Z}$ for any homomorphism $\varphi : \mathbb{Z}/2\mathbb{Z} \to Aut(\mathbb{Z}/2\mathbb{Z})$.

Exercise 4. Internal semi-direct product

- (1) **Definition:** Let G be a group and let $K, L \subseteq G$ be subgroups. We say that G is the internal semi-direct product of K with L if the following properties hold:
 - (a) K is a normal subgroup of G.
 - (b) $K \cap L = \{1\}.$
 - (c) KL = G.

Note that if G is an internal semi-direct product of K with L then since K is a normal subgroup of G, there is an action of L on K by automorphisms, namely $l \cdot k := lkl^{-1}$ for $l \in L$ and $k \in K$. Let φ denote the corresponding homomorphism $L \to \operatorname{Aut}(K)$. Show that

$$G \cong K \rtimes_{\varphi} L$$
.

(2) Suppose furthermore that L is also a normal subgroup of G, show that kl = lk for all $k \in K$ and $l \in L$. Observe that this implies that $\varphi : L \to Aut(K)$ is the trivial homomorphism. Conclude that

$$G \cong K \times L$$
.

Exercise 5. Let $G = K \rtimes_{\psi} L$ for some groups K, L and a homomorphism $\psi : L \to Aut(K)$. Verify that G is the internal semi-direct product of $K \times \{1\}$ with $\{1\} \times L$ in G. Furthermore check that

$$(\psi_l(k), 1) = (1, l) \cdot (k, 1) \cdot (1, l)^{-1}$$

in G. Using this, conclude that

$$G = K \rtimes_{\psi} L \cong (K \times \{1\}) \rtimes_{\varphi} (\{1\} \times L).$$

Where $\varphi: \{1\} \times L \to Aut(K \times \{1\})$ corresponds to the conjugation action of $\{1\} \times L$ on $K \times \{1\}$ in G.

Exercise 6. Write S_3 as a semi direct product of subgroups.

Exercise 7. Let $n \ge 1$ be a positive integer.

- (1) Find all possible homomorphisms $\varphi : \mathbb{Z}/2\mathbb{Z} \to Aut(\mathbb{Z}/4\mathbb{Z});$
- (2) Describe their associated semi-direct product $\mathbb{Z}/4\mathbb{Z} \rtimes_{\varphi} \mathbb{Z}/2\mathbb{Z}$;
- (3) Is one of them isomorphic to D_8 ?
- (4) Find a homomorphism $\varphi : \mathbb{Z}/2\mathbb{Z} \to Aut(\mathbb{Z}/n\mathbb{Z})$ such that $D_{2n} \cong \mathbb{Z}/n\mathbb{Z} \rtimes_{\varphi} \mathbb{Z}/2\mathbb{Z}$.

Exercise 8. Let F be any field. The aim of this exercise is to show that

$$GL_n(F) \cong SL_n(F) \rtimes_{\varphi} F^{\times}$$

for some $\varphi: F^{\times} \to Aut(SL_n(F))$.

We will do this by showing that the following short exact sequence splits on the right (Refer to Proposition 10 of Lecture 4 of the notes):

$$1 \to SL_n(F) \xrightarrow{i} GL_n(F) \xrightarrow{\det} F^{\times} \to 1.$$

That is, construct a group homomorphism $\phi: F^{\times} \to GL_n(F)$ such that $\det \circ \phi = \operatorname{Id}_{F^{\times}}$. What is the map $\varphi: F^{\times} \to Aut(SL_n(F))$ which corresponds to the section ϕ that you have constructed such that $GL_n(F) \cong SL_n(F) \rtimes_{\varphi} F^{\times}$?